自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Smileyan's blog

欢迎吐槽与关注,联系邮箱 root@smileyan.cn

  • 博客(176)
  • 资源 (12)
  • 论坛 (2)
  • 收藏
  • 关注

原创 大学生选择云服务器,腾讯云?阿里云?还是华为云?

感谢首先感谢这些企业,为我们这些贫穷的大学生提供了这么好的机会,以如此低廉的价钱享受云服务器给我们这些开发人员带来的好处。腾讯云优惠活动:以前的旧版本是支持每个月进行续费的,但是现如今腾讯云学生机已经不支持按月续费了,只提供两次续费的机会,并且每次续费都最多续费一年。也就是意味着,我们最多享受腾讯云服务器的时间为3年(除去升学后继续认证这种情况)。配置:1核2G,1M带宽,50G磁盘。...

2020-11-21 22:15:39 13795 11

原创 Tensorflow2 基本操作字典

这里写目录标题1. 安装与相关资料1.1 安装1.2 相关文档资料2. tensor 基础2.1 数据类型2.2 查看变量是不是 tensor2.3 转换为 tensor2.4 转换为 tensor 并改变数据类型2.5 数据类型转换2.6 tf.Variable(可优化参数)2.7 查看维度1. 安装与相关资料1.1 安装环境说明:python3pip安装命令(以 2.3.0 版本为例):pip install tensorflow==2.3.0 -i https://pypi.tuna

2020-10-25 21:04:09 886

原创 找出和最大的子序列(动态规划 O(n))

题目描述给一个数组,寻找其中和最大的子串输入[1, -10, 5, 4, -8, 10, -20]输出最大子串的和2 2愚蠢的解法先学一下 O(n^2)我一直在纠结纠结如何 O(n)O(n)O(n) ,因为我做过这类题,不应该这么固执的,现在反思一下,先写个百分百超时的吧,拿不到满分应该可以拿40分。向以前的算法老师致歉这种方法就是求出所有的子串,再找到最大的。O(n) 也比较简单基本思路就是一次遍历,如果子串的和大于0,那么这个子串就可以继续加后面的数,如果这个子串的和为负

2021-09-07 17:44:18 9

原创 【图论刷题-3】力扣 733. 图像渲染

733. 图像渲染力扣原题 地址难度与标签中等难度广度优先搜索(BFS)深度优先搜索(DFS)题目描述有一幅以二维整数数组表示的图画,每一个整数表示该图画的像素值大小,数值在 0 到 65535 之间。给你一个坐标 (sr, sc) 表示图像渲染开始的像素值(行 ,列)和一个新的颜色值 newColor,让你重新上色这幅图像。为了完成上色工作,从初始坐标开始,记录初始坐标的上下左右四个方向上像素值与初始坐标相同的相连像素点,接着再记录这四个方向上符合条件的像素点与他们对应四个方向上

2021-08-15 23:19:09 46

原创 【图论刷题-2】剑指 Offer 12. 矩阵中的路径

剑指 Offer 12. 矩阵中的路径力扣题目地址 | 同题地址难度与标签中等难度图递归回溯深度优先搜索广度优先搜索题目描述给定一个 m x n 二维字符网格 board和一个字符串单词 word 。如果 word存在于网格中,返回 true ;否则,返回 false 。单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。示例1:输入:board = [[“A”,“B”,“C”,“

2021-08-13 10:26:19 29

原创 【图论刷题-1】剑指 Offer 13. 机器人的运动范围

剑指 Offer 13. 机器人的运动范围力扣题目 地址难度与标签中等难度图递归广度优先题目描述地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够

2021-08-12 21:08:12 22

原创 《异常检测——从经典算法到深度学习》13 MAD: 基于GANs的时间序列数据多元异常检测

《异常检测——从经典算法到深度学习》0 概论1 基于隔离森林的异常检测算法 2 基于LOF的异常检测算法3 基于One-Class SVM的异常检测算法4 基于高斯概率密度异常检测算法5 Opprentice——异常检测经典算法最终篇6 基于重构概率的 VAE 异常检测7 基于条件VAE异常检测8 Donut: 基于 VAE 的 Web 应用周期性 KPI 无监督异常检测9 异常检测资料汇总(持续更新&抛砖引玉)10 基于条件 VAE 的鲁棒无监督KPI异常检测11 针对

2021-08-05 17:02:24 467 12

原创 快速求解 best F1-score 以及对应的阈值

问题描述在二分类问题中,评测某种算法有很多指标,很多论文是通过比较 F1-score 来证明自己的算法是可行的。best F1-score 是指在不确定阈值的情况下,如何找到最合适的阈值,使得 F1-score 值最大。F1-score 计算方法TP/FP/TN/FN全称真实值(标签,label)预测值(predict)TPTrue Positive11FPFalse Positive01TNTrue Negative00FNFalse

2021-07-09 18:28:33 123

原创 CentOS 桌面版安装 Typora

下载二进制文件前去官网发现提供的 linux 版本没有直接用在 CentOS 这一类操作系统的,但是官网提供了一个下载二进制文件的方法。具体介绍内容的地址为:https://support.typora.io/Typora-on-Linux/具体的下载地址为: https://typora.io/linux/Typora-linux-x64.tar.gz下载并解压解压后得到的文件里并不包含可执行文件,可以找到一个 Typora 文件,但并不能直接运行。可能会提示缺少某一个包。...

2021-05-15 15:38:04 165

原创 《异常检测——从经典算法到深度学习》12 对于复杂 KPI 基于VAE对抗训练的非监督异常检测

《异常检测——从经典算法到深度学习》0 概论1 基于隔离森林的异常检测算法 2 基于LOF的异常检测算法3 基于One-Class SVM的异常检测算法4 基于高斯概率密度异常检测算法5 Opprentice——异常检测经典算法最终篇6 基于重构概率的 VAE 异常检测7 基于条件VAE异常检测8 Donut: 基于 VAE 的 Web 应用周期性 KPI 无监督异常检测9 异常检测资料汇总(持续更新&抛砖引玉)10 基于条件 VAE 的鲁棒无监督KPI异常检测11 针对

2021-05-04 22:06:23 2219 16

原创 Hadoop 入门简单例子(linux 系统环境,Java 代码)

内容概述使用的是 linux 可视化开发环境 (UbuntuKylin 16.04 )不含 hadoop 环境配置以及 Java 环境配置如何启动与关闭 hadoopJava 代码 hdfs 简单例子使用的是 eclipse IDE启动与关闭 hadoop hdfs首先找到 hadoop 的安装位置,本例中 hadoop 的安装位置为 /home/ubuntu/data/hadoop 即 ~/data/hadoop。找到 hadoop 里面的 可执行文件,这里只介绍其中的三个可执行文件。

2021-04-30 12:10:39 208 4

原创 【latex】4 写作时使用 git 进行版本管理

《latex 学习笔记》【latex】1 环境安装与快速上手【latex】2 使用Aurora与在word中编写伪代码【latex】3 会议期刊论文模板的使用方法【latex】4 写作时使用git进行版本管理【latex】4. 写作时使用 git 进行版本管理4.1 git 的作用简单介绍简单来说,git 是用来管理版本的最好的工具之一,并且可以把自己的文件托管到云平台上,避免出现由于机器故障而导致的巨大损失——即便写论文的所有设备都坏了,已经写好的部分还保存在云服务器上。另外也可以

2021-04-21 10:38:09 192

原创 GAN 数学原理简单介绍以及代码实践

1. GAN 数学原理1.1 GAN 概述GAN(Generative Adversarial Network) 是一种深度生成神经网络,它包括 生成模型 与 判别模型 两个部分。其中,生成模型 的任务是生成 “假” 样本,而 判别模型 的任务是甄别出 “假” 样本。对抗 的概念体现在两个模型之间的互动过程,生成模型 希望能成功欺骗 判别模型,达到 “以假乱真” 的目的;判别模型 需要擦亮自己的眼睛,尽量不让 生成模型 “欺骗”。而 GAN 是最终大 Boss ,静静地看着两个小弟如虞我诈,最后欣

2021-04-09 19:50:18 219

原创 KL散度、交叉熵与JS散度数学公式以及代码例子

KL散度与JS散度数学公式以及代码例子1.1 KL 散度概述 KL 散度 是概率论和信息论中十分重要的一个概念。它描述两个概念分布 PPP 和 QQQ 差异的一种方法。离散概率分布的 KL 散度 计算公式为:KL(p∣∣q)=∑p(x)log⁡p(x)q(x)          (1)KL(p||q)=\sum p(x)\log{{p(x)}\over{q(x)}} \ \ \ \ \ \ \

2021-03-28 22:16:19 354

原创 《异常检测——从经典算法到深度学习》11 ADS —— 针对大量出现的KPI流快速部署异常检测模型

《异常检测——从经典算法到深度学习》0 概论1 基于隔离森林的异常检测算法 2 基于LOF的异常检测算法3 基于One-Class SVM的异常检测算法4 基于高斯概率密度异常检测算法5 Opprentice——异常检测经典算法最终篇6 基于重构概率的 VAE 异常检测7 基于条件VAE异常检测8 Donut: 基于 VAE 的 Web 应用周期性 KPI 无监督异常检测9 异常检测资料汇总(持续更新&抛砖引玉)10 基于条件 VAE 的鲁棒无监督KPI异常检测11 针对

2021-03-13 21:49:37 575

原创 《异常检测——从经典算法到深度学习》10 Bagel: 基于条件 VAE 的鲁棒无监督KPI异常检测

《异常检测——从经典算法到深度学习》0 概论1 基于隔离森林的异常检测算法 2 基于LOF的异常检测算法3 基于One-Class SVM的异常检测算法4 基于高斯概率密度异常检测算法5 Opprentice——异常检测经典算法最终篇6 基于重构概率的 VAE 异常检测7 基于条件VAE异常检测8 Donut: 基于 VAE 的 Web 应用周期性 KPI 无监督异常检测9 基于条件 VAE 的鲁棒无监督KPI异常检测2018 Robust and Unsupervised K

2021-03-09 20:02:41 682

原创 python 通过 matplotlib 绘制矢量图

python 通过 matplotlib 绘制矢量图问题描述当遇到这种情况:需要通过代码和数据进行图片的绘制的时候,可以考虑使用 OriginPro 进行绘制,并且在很多情况下,OriginPro 都更加合适绘图,导出矢量图也比较方便。但是如果遇到一定要编写代码进行绘制图像的时候,并且希望导出矢量图的时候,可以考虑使用 matplotlib, 它提供了保存为 eps 格式图片的功能。数据集这里是以时间序列数据为例,数据集是来自 https://github.com/NetManAIOps/donu

2021-03-09 13:44:15 1255 2

原创 《异常检测——从经典算法到深度学习》9 异常检测资料汇总(持续更新&抛砖引玉)

考虑到异常检测任务的繁琐,这里特地列举一些可能大家用的到的论文和资料,如果有补充请务必在后面留言。1. 论文论文是重中之重,请务必重视论文阅读。

2021-03-07 21:59:35 917 6

原创 OriginPro 绘制柱状图(特别是用于对比实验时)

OriginPro 绘制柱状图(特别是用于对比实验时)1. OriginPro 绘制柱状图如图所示填充数据:全选整个数据,选择导航中的 绘图,找到 柱状图,点击即可。 2. Origin绘制成组的柱状图对比方法1现在假设有三名学生,总共有三门学科,以及成绩。现在需要分别展示三名学生的成绩柱状图。同样全选然后点击上面导航栏的绘图,选择 柱状图。对比方法2同样的数据,现在需要分别对每一门成绩进行对比。注意请对比上面两个绘制的图片,在分别对比三个学生的成绩的时候,纵轴导航的

2021-03-07 11:26:30 2499

原创 OriginPro 2021 设置成中文(软件自带)

OriginPro 2021 设置成中文(软件自带)步骤极其简单找到上面菜单中的 Help,点击后可以看到下面倒数第4 个有 Change Language然后会提示重启应用,重启一下就可以了。效果如图所示:这个是由官方提供的功能,应该是可以解决大多数问题的。...

2021-03-05 20:58:04 9480 6

原创 【latex】3 会议期刊论文模板的使用方法(包括图片处理方法)

《latex 学习笔记》【latex】1 环境安装与快速上手【latex】2 使用Aurora与在word中编写伪代码【latex】3 告别 word,使用 latex 编写论文常用操作内容描述从这里开始,彻底放弃了 word。我们认为,word能完成的大多数操作,latex都能完成。这里将根据论文的基本结构编写一个简单的例子,这个例子的源代码地址为:论文结构...

2021-03-05 20:17:53 871

原创 【latex】2 使用Aurora与在word中编写伪代码

问题描述如果希望在论文中使用 latex 编写伪代码,就像下图一样简洁美观的话,可以考虑继续阅读。下载安装与配置 Aurora1. 确保安装好了 latex前面介绍了安装一个很大的包 latexlive[1] 环境安装与快速上手,这一个步骤需要用到前面安装了的内容,所以如果还没安装好了话,请前去安装一下。如果已经安装的不是 latexlive 而是其他的 latex 的话也没关系,总之需要找到三个可行文件的路径即可,即latex.exedvipng.exepdflatex.exe2.

2021-02-20 21:55:59 1967 8

原创 【latex】1 环境安装与快速上手

问题描述需要使用 latex 编写论文相关算法伪代码,花了不少的时间折腾,这里记录一下吧。下载与安装 tex具体来说有两种方法,推荐安装最庞大但是也是最齐全的版本:texlive,比较可怕的是居然 2020 版本居然有 3.7G,推荐使用迅雷下载可能快一些。下载地址推荐:清华开源软件镜像站tex-live安装方法也非常简单粗暴:把下载的 iso 文件解压到任意文件夹。找到其中的 install-tl-windows.bat 脚本文件,双击安装即可。下载与安装可能需要一些些时间,请耐心等候

2021-02-20 16:05:41 777

原创 findfont: Font family [‘Times New Roman‘] not found. Falling back to DejaVu Sans.字体安装

问题描述使用python对数据进行可视化的时候,matplotlib绘图的时候,提示警告如题所示: UserWarning: findfont: Font family ['Times New Roman'] not found. Falling back to DejaVu Sans.环境说明:使用的是 CentOS系统,应该其他linux系统也适用。在使用 jupyter notebook 的时候提示的错误。字体上传在自己的 windows 系统下找到字体文件,并复制到桌面(共四个文件),然后上

2021-02-19 20:45:11 2832

原创 matplotlib绘制时间戳数据x轴格式化

问题描述如图所示,如果需要对时间序列数据进行可视化,并且选择使用 matplotlib 这样的工具的话,可以考虑阅读以下内容。解决方法简单描述就是,首先拿到的是时间戳与每个时间戳对应的 value 值,需要绘制折线图,并且,x 轴需要按照类似于上面图片所示的格式。例子代码如下:import matplotlib.pyplot as pltimport matplotlib.dates as mdimport dateutiltimestamps = [1613878080, 161392

2021-02-16 16:10:34 762

原创 《异常检测——从经典算法到深度学习》8 Donut: 基于 VAE 的 Web 应用周期性 KPI 无监督异常检测

《异常检测——从经典算法到深度学习》0 概论1 基于隔离森林的异常检测算法 2 基于LOF的异常检测算法3 基于One-Class SVM的异常检测算法4 基于高斯概率密度异常检测算法5 Opprentice——异常检测经典算法最终篇6 基于重构概率的 VAE 异常检测7 基于条件VAE异常检测8 (实验一)基于重构概率的 VAE 异常检测8. (实验一)基于重构概率的 VAE 异常检测8.1 实验概述8.1.1 实验目的通过本次实验实现论文 《Variational Auto

2021-01-10 21:52:01 1317 3

转载 一文了解时间序列异常检测

转载自 https://mp.weixin.qq.com/s/g6xwiRYhNyulwLlBYLh-4Q?scene=25仅仅用于学习方面,如有侵权,请联系 root@smileyan.cn背景介绍「时间序列」是指某一个指标按照时间的统计或者观测而成的数列。比如,在运维的领域中,某主机每秒的CPU使用率、某业务每分钟的请求数量等,都可以形成一条时间序列;「异常检测」是指对反常的、和历史不同的行为模式识别。如某台一直空闲的机器,CPU使用率突然飙升至100%、某系统在本应业务繁忙的时间段请求数量降.

2020-12-08 20:19:36 2049

原创 《异常检测——从经典算法到深度学习》7 基于条件VAE异常检测

《异常检测——从经典算法到深度学习》0 概论1 基于隔离森林的异常检测算法 2 基于LOF的异常检测算法3 基于One-Class SVM的异常检测算法4 基于高斯概率密度异常检测算法5 Opprentice——异常检测经典算法最终篇6 基于重构概率的 VAE 异常检测7. 基于条件的VAE异常检测论文名称:Anomaly Detection With Conditional Variational Autoencoders发表时间:2019.12 立即下载论文总体结构:

2020-11-25 15:32:50 1789

原创 tensorflow2 卷积变分自编码器的实现与简单应用

1 编写目的VAE ( Variational Autoencoders,变分自编码) 模型组合了神经网络和贝叶斯推理这两种最好的方法,是最酷的神经网络,已经成为无监督学习的流行方法之一。(摘自《TensorFlow 深度学习实战》 安东尼奥-古利;阿米塔-卡普尔。机械工业出版社)。在上一篇博客 VAE 模型基本原理简单介绍 已经介绍基本原理,这里记录一下 VAE 模型的实现过程(必须声明:我只是源代码的读者,而不是作者。)2 VAE 模型的实现参考自...

2020-11-06 18:04:10 1695

原创 linux 定时任务 (python 爬虫统计博客数据)

linux 定时任务 (python 爬虫)1. 任务目标每天统计一下今日博客的各项数据,并以邮件的形式发送给自己。2. linux 定时任务 (python)一切复杂的任务都应该从最简单的开始,这位博主有一个很简单易懂的demo,请参考一下他的这篇 博客。在理解基本过程后,就可以开始定时运行python脚本了。首先在某目录下新建任务文件 crontest.cron,用于存在定时任务语句。相同新建 hello.py 文件,并且编辑这个文件写一句简单的 print('Hello World')

2020-10-27 16:29:12 536 2

原创 《异常检测——从经典算法到深度学习》6 基于重构概率的 VAE 异常检测

目录0 概论1 基于隔离森林的异常检测算法 2 基于LOF的异常检测算法3 基于One-Class SVM的异常检测算法4 基于高斯概率密度异常检测算法5 Opprentice——异常检测经典算法最终篇6 基于 VAE 的异常检测算法6. 基于 VAE 的异常检测算法论文名称:Variational Autoencoder based Anomaly Detection using Reconstruction Probability发表时间:2015.12 立即下载论文总体

2020-10-24 10:30:48 2919 6

原创 30行代码统计自己 CSDN 博客相关数据

1. 编写目的爬虫本身是一个非常简单的事情,都是由于业务需要才变得越来越复杂的。为了方便广大开发者,也有很多简单好用的爬虫框架,但这里不使用那些已经实现了的专用框架,也不能起到任何商业化的目的,只是单纯地爬一下自己 csdn 博客数据。当然,为了更加好玩可以自行添加一些功能,比如说增加粉丝或者有评论时给自己发个邮件等等。当初还自己写了一些统计功能,但是现在 CSDN 已经提供了 “数据观星” 的功能,没事的时候可以逛逛看看自己的博客访客点赞评论数目(多么少)。2. 具体实现2.1 依赖pytho

2020-10-20 17:04:37 270

原创 VAE 模型基本原理简单介绍

1. 编写目的当前不少关于异常检测的论文提到了基于VAE的算法,为了更好理解那些论文,这里专门记录一下关于VAE 的相关内容。2. VAE 基本概念Variational Autoencoder参考[1] Kingma D P, Welling M. Auto-Encoding Variational Bayes[J]. stat, 2014, 1050: 10. 论文下载地址...

2020-09-24 18:28:56 7091 17

原创 pip 查看已经安装包版本

百度查了一下,感觉答案都不好,记录一下。命令 pip show xxxx即可查看 已经安装的包的版本,比如 pip show tensorflowName: tensorflowVersion: 2.3.0Summary: TensorFlow is an open source machine learning framework for everyone.Home-page: https://www.tensorflow.org/Author: Google Inc.Author-ema

2020-09-24 13:41:56 2038

转载 卷积神经网络速成

转载自《深度学习–基于Keras的Python实践》第十二章魏贞原 著电子工业出版社微信文章地址:https://mp.weixin.qq.com/s/KhtZVooroo0qyD8U_D7S2w很不错的书,推荐购买实体书。转载目的是为了方便大家学习,如有侵权,请联系 root@smileyan.cn 。立即删除卷积神经网络(ConvolutionalNeural Network,CNN)是一种前馈神经网络,是一种强大的人工神经网络技术,它的人工神经元可以响应一部分覆盖范围内的周围单元,并保.

2020-07-13 11:15:59 888

转载 多层感知器速成

转载自《深度学习–基于Keras的Python实践》第四章魏贞原 著电子工业出版社微信文章地址:https://mp.weixin.qq.com/s/WWuKIE4ZGD3KFjLnBojjhQ人工神经网络是一个引人入胜的学习领域,尽管在开始学习的时候非常复杂。本章将会快速的介绍一下在人工神经网络领域使用的多层感知器。4.1 多层感知器人工神经网络领域通常被称为神经网络或多层感知器(MLP,MultilayerPerceptron),多层感知器也许是最有用的神经网络类型。多层感知器是一种前馈.

2020-07-07 09:38:29 2437

原创 《异常检测——从经典算法到深度学习》5 Opprentice——异常检测经典算法最终篇

目录0 概论1 基于隔离森林的异常检测算法 2 基于LOF的异常检测算法3 基于One-Class SVM的异常检测算法4 基于高斯概率密度异常检测算法5 走近AIOps:Opprentice系统(待更)5 基于随机森林的异常检测算法:Opprentice此篇主要介绍以下内容:论文概述算法实验小结5.1 论文概述论文名称:Opprentice: Towards Practical and Automatic Anomaly Detection Through Machin

2020-06-23 17:19:37 4081

原创 《异常检测——从经典算法到深度学习》4 基于高斯概率密度异常检测算法

目录0 概论1 基于隔离森林的异常检测算法 2 基于LOF的异常检测算法3 基于One-Class SVM的异常检测算法4 基于高斯概率密度异常检测算法 (待更)4. 基于高斯概率密度异常检测算法此篇主要介绍以下内容:基于高斯概率密度异常检测算法概述基于高斯概率密度异常检测算法应用实例小结4.1 算法概述基本思想: 首先,该算法假设数据集服从高斯分布的,然后再分别计算训练集在空间中的重心, 和方差, 然后根据高斯概率密度估算每个点被分配到重心的概率,进而完成异常检测任务。特

2020-05-28 21:06:57 1887

原创 《异常检测——从经典算法到深度学习》3 基于One-Class SVM的异常检测算法

3. 基于 One-Class SVM 的异常检测算法此篇主要介绍以下内容:One-Class SVM 算法概述One-Class SVM 算法应用实例小结3.1 One-Class SVM 算法概述SVM (Support Vector Machines): 支持向量机是一类按监督学习方式对数据进行二元分类的广义线性分类器,其决策边界是对学习样本求解的最大边距超平面。 —— 百度百科One-Class SVM: One-Class SVM是一种无监督算法,它学习用于新颖性(novel

2020-05-26 16:52:39 4573

原创 《异常检测——从经典算法到深度学习》2 基于LOF的异常检测算法

2. 基于 LOF 的异常检测算法此篇主要介绍以下内容:LOF 算法概述LOF 算法应用实例小结2.1 LOF算法概述LOF (Local Outliers Factor,局部异常因子) 算法 是一种非监督异常检测算法,它是通过计算给定数据点相对于其邻域的局部密度偏差而实现异常检测。LOF: Identifying Density-Based Local Outliers 论文下载核心思路: LOF算法是通过比较每个点p和邻域点的密度来判断该点是否为异常:点p的密度越低,越有可能是异常点。

2020-05-23 19:41:54 7030

成语数据库(总共31851个成语,含拼音,解释,出处,例子)

总共含31851个成语,每个成语都包括拼音,解释。大多数还包括出处和例子。 为了大家使用方便我已经写好了创建数据库和表的操作,读了我的说明文档很容易就可安装。有什么问题欢迎交流。

2018-04-21

java 邮箱发送(发送方为163邮箱)

【特别强调】这份代码运行后会有一个简单的界面,分别输入用户邮箱(发送方)与密码,然后输入接收方的邮箱地址。然后输入自己的昵称,邮件的主题,邮件的主体内容。 【特别注意】发送方是163邮箱,接收方可是是任何邮箱。 有什么疑问可以联系我,谢谢

2018-06-15

KDD Cup 99 数据集异常检测,二分类

KDD CPU99 数据集,已经经过处理,适合于二分类问题比如说异常检测。 已经分好了训练集与测试集,分别是两个文件。

2021-08-07

简单的web服务器(支持html代码)

使用简单的netty框架,java语言实现了简单的web服务器,我看了一下其他的博主的,我认为他们的前端代码可修改性不强。 我的代码亮点大概在于运行服务器之后,可以修改前端的代码,来更改前端界面的显示。另外为了区别html格式,我的前端界面是.yan后缀名的。

2018-05-05

Java与模式.pdf

非常不错的书,强烈推荐! 没积分可以百度云下载,下载地址如下:https://blog.csdn.net/smileyan9/article/details/81486926

2018-08-07

C#实现ping操作例子

总体来说非常简单,只能提供给一些初学者或者是感兴趣的人下载。 特别提醒,这个不是游戏,是计算机网络课程的ping操作例子。

2018-04-21

C语言实现双人版贪吃蛇(图形界面)

请原谅我资源分有点高。不过这份代码是我花了很长时间修修改改实现的,并且有详细的注解帮助你理解,有什么问题欢迎交流。

2018-04-21

SSH框架搭建成功例子(注解方式,Struts2自身创建Action)

做这个东西居然花了不少时间,也折腾了不少时间——尽管这并不是一个复杂的东西。 环境:jdk1.8 tomcat8.5 mysql Eclipse 使用的是注解的方式完成的,因为注解的方式可以减少一些配置文件,比较方便的。 【特别强调】一定要清楚如何调试项目,因为自己的环境和下载的资源的环境可能不一样,需要修改配置文件或是其他才能正常运行。https://blog.csdn.net/smileyan9/article/details/80522536

2018-05-31

SSH框架注解方式,struts自身创建Action

SSH框架,下载后导入即可用,不是Maven项目,ssh框架中的action的创建时struts2自己完成的。

2018-08-29

nupic-master.zip

也就是 https://github.com/numenta/nupic的文件。 下载于2019年11月5日13:48。 因为github上直接下载总是失败,所以再次分享一下。

2019-11-05

SSH框架注解方式,Maven项目

花了不少时间做这个demo,考虑到很多伙伴们不想自己从头开始搭建,当然我也属于其中之一,所以特地用Maven搭建了这样的一个框架,是注解的方式,整个mini demo是很容易理解的。

2018-08-30

SSH框架的jar包文件

以上内容是ssh框架中需要使用的jar包,当然也不是所有都用得到,只是说,常用的一些jar包。 【特别强调】注意版本问题!不一定在此处下载的是你所需要的版本的jar包。具体版本说明如下: struts2 版本号 2.3.24 spring 版本号 3.2.2 hibernate 版本号 3 【再次强调】如果需要其他版本的jar包,请到官网下载。

2018-05-31

smile-yan的留言板

发表于 2020-01-02 最后回复 2020-02-25

CSDN源码加密了?

发表于 2019-05-22 最后回复 2019-05-23

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除